Regio- and stereoselectivity in 1,3-dipolar cycloaddition reaction of 2-diazopropane with benzylidene- N-arylsuccinimide and benzylidene- N arylmethylsuccinimide derivatives: synthesis of gem-dimethylcyclopropane Naoufel Ben Hamadi* and Moncef Msaddek

Laboratoire de Synthèse Hétérocyclique et substances naturelles, Département de Chimie, Faculté des Sciences 5000 Monastir, Tunisia
1,3-dipolar cycloaddition of 2-diazopropane with (E)-benzylidene- N-arylsuccinimide and (E)-benzylidene- N arylmethylsuccinimide derivatives is taking place regiospecifically to give a new spiro-pyrazolines. The reaction of 2-diazopropane with (E)-benzylidene- N-arylmethylsuccinimide derivatives is diastereospecific. Irradiation of the pyrazoline led to clean extruction of nitrogen to give the new spiro-cyclopropanes.

Keywords: 1,3-cycloaddition, spiro-pyrazolines, irradiation, spiro-cyclopropanes

Cyclopropane ring, a common motif among natural compounds, deserves high interest, in terms of access, synthetic potential, and bioactivities. ${ }^{1}$ The gem-dimethylcyclopropane unit is a key structural of many valuable natural products ${ }^{2,3}$ such as phorbol, aristolone and chrysanthemic acid.

Results and discussion

(E)-Benzylidene- N-arylsuccinimide derivatives 2a-d are obtained by condensation of aldehydes ArCHO with ylides, by the procedure reported in the literature. ${ }^{4}$ Wittig reaction products $\mathbf{2 e}-\mathbf{h}$ between aldehydes and several ylides were carried out in refluxing 1,2-dichloroethane. ${ }^{5}$ Addition of ethereal 2-diazopropane $\mathbf{1}$ to a solution of $\mathbf{2}$ in dichloromethane at $-78^{\circ} \mathrm{C}$ until 2 was consumed followed by warming to room temperature gave a racemic monoadducts spiro- Δ^{1}-pyrazolines 3 in good yield (Scheme 1). The spiro adducts $\mathbf{3 a}-\mathbf{h}$ were purified and characterised.

The 1,3-dipolar cycloaddition of 2-diazopropane is, in each case, regiospecific. The chemical shifts of $\mathrm{C}_{5}\left({ }^{13} \mathrm{C}\right.$ NMR) are in excellent agreement with those usually obtained when this quaternary carbon is attached to nitrogen atom. ${ }^{6}$ The cycloaddition to the (E)-benzylidene- N-arylmethylsuccinimide derivatives $2 \mathbf{e}-\mathbf{h}$ proceeded fully analogously. Also in this case the approach of the dipole occurs at the anti-face to the methyl substituent in the dipolarophile $\mathbf{2 e}-\mathbf{h}$. The attack of the 1,3 -dipole occurred from the less hindered face of the dipolarophile $\mathbf{2 e} \mathbf{-} \mathbf{h}$ giving the isomer $\mathbf{3 e}-\mathbf{h}$. The stereochemistry of this cycloaddition product was determined from a NOESY spectrum. The trans relationship between protons H_{4} and H_{9} was deduced from observation of an NOE effect between H_{4} and the methyl protons (Fig. 1). The stereochemical pathway

Fig. 1
of cycloaddition of $\mathbf{1}$ to $\mathbf{2 e - h}$ resembles that of reaction between 2-arylidene-3'-methylindan-1'-ones with diarylnitrilimines. ${ }^{7}$

Irradiation of an ethereal solution of the Δ^{1}-pyrazolines 3 through Pyrex with a high-pressure mercury arc lamp (Philips HPK 125 W) at $0-5^{\circ} \mathrm{C}$ led to exclusive formation of gemdimethylcyclopropanes ${ }^{8} 4$ (Scheme 2). Its spectroscopic data (NMR) fit perfectly with those of product 4a-d.

Conclusion

The reaction of 2-diazopropane with (E)-benzylidene- N arylmethylsuccinimide derivatives is regio- and diastereospecific. Photolysis of the initially formed Δ^{1}-pyrazoline 3a-d derivatives afforded gem-dimethylcyclopropanes $\mathbf{4 a - d}$. The biological evaluation of this compound is in progress.

Experimental

IR spectra were recorded on a Perkin-Elmer IR-197 spectrometer. NMR spectra were obtained on a bruker AC 300 spectrometer

Scheme 1

[^0]

Scheme 2

operating at 300 MHz for ${ }^{1} \mathrm{H}$ and at 75.64 MHz for ${ }^{13} \mathrm{C}$. Melting points were determined on a BUCHI-510 capillary melting point apparatus. All reagents were of commercial quality or purified by standard procedures. 2-diazopropane 1 was prepared according to the literature procedure ${ }^{9}$ and conserved in ethereal solution at $-78^{\circ} \mathrm{C}$.

General procedure for trapping of 2-diazopropane $\mathbf{1}$ with alkenes $\mathbf{2}$ A stirred solution of $2(5 \mathrm{mmol})$ in dry dichloromethane $(150 \mathrm{ml})$ was cooled to $-78^{\circ} \mathrm{C}$ and treated with an ethereal solution of 2-diazopropane. The mixture was monitored by thin-layer chromatography (TLC) and the addition of 2-diazopropane was ceased when no starting materiel was present. The mixture was allowed to warm to room temperature 3 hours and concentrated to give the crude reaction product. Recrystallisation from ethanol.

4,7-diphenyl-3,3-dimethyl-1,2,7-triazaspiro[4.4]non-1-ene-6,8dione 3a: By the above method, phenylidene- N-phenylsuccinimide $(1.31 \mathrm{~g}, 5 \mathrm{mmol})$ to give a white solid $(1.33 \mathrm{~g}, 80 \%)$, m.p. $129^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \mathrm{vcm}^{-1} ; 1515(\mathrm{~N}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.85\left(\mathrm{~d}, 1 \mathrm{H}, J=18.3 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.19(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.18.3 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 6.92-7.51\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 24.19$ and $28.29\left(\mathrm{CH}_{3}\right), 37.47\left(\mathrm{C}_{9}\right), 52.80\left(\mathrm{C}_{4}\right), 97.38$ $\left(\mathrm{C}_{3}\right), 99.41\left(\mathrm{C}_{5}\right), 126.42-135.45\left(\mathrm{C}_{\text {arom }}\right), 173.08$ and $173.20\left(\mathrm{C}_{6,8}\right)$. Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $72.05 ; \mathrm{H}, 5.74 ; \mathrm{N}, 12.60 \%$; Found: C, $72.14 ;$ H, 5.80 ; N, 12.45%.

4-anisyl-7-phenyl-3,3-dimethyl-1,2,7-triazaspiro[4.4]non-1-ene6,8 -dione 3b: By the above method, anisylidene- N-phenylsuccinimide $(1.46 \mathrm{~g}, 5 \mathrm{mmol})$ to give a white solid $(1.27 \mathrm{~g}, 70 \%)$, m.p. $106^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \mathrm{v}_{\mathrm{cm}}{ }^{-1} ; 1520(\mathrm{~N}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.26(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.86\left(\mathrm{~d}, 1 \mathrm{H}, J=18.3 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.15(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=18.3 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.86-7.51(\mathrm{~m}$, $\left.9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 24.11$ and $28.14\left(\mathrm{CH}_{3}\right), 37.28\left(\mathrm{C}_{9}\right)$, $52.12\left(\mathrm{C}_{4}\right), 55.39\left(\mathrm{OCH}_{3}\right), 96.99\left(\mathrm{C}_{3}\right), 99.16\left(\mathrm{C}_{5}\right), 114.20-159.21$ $\left(\mathrm{C}_{\text {arom }}\right), 173.13$ and $173.31\left(\mathrm{C}_{6,8}\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 69.41 ; H, 5.82; N, 11.56\%; Found: C, 69.43; H, 5.90; N, 11.44\%.

7-anisyl-4-phenyl-3,3-dimethyl-1,2,7-triazaspiro[4.4]non-1-ene6,8 -dione 3c: By the above method, phenylidene- N-anisylsuccinimide $(1.46 \mathrm{~g}, 5 \mathrm{mmol})$ to give a yellow solid $(1.36 \mathrm{~g}, 75 \%)$, m.p. $110^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \mathrm{v}_{\mathrm{cm}}{ }^{-1} ; 1520(\mathrm{~N}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.28(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.84\left(\mathrm{~d}, 1 \mathrm{H}, J=18.3 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.18(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=18.3 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.59\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.93-7.37(\mathrm{~m}$, $\left.9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 23.53$ and $28.63\left(\mathrm{CH}_{3}\right), 37.75\left(\mathrm{C}_{9}\right)$, $53.14\left(\mathrm{C}_{4}\right), 55.93\left(\mathrm{OCH}_{3}\right), 97.66\left(\mathrm{C}_{3}\right), 99.69\left(\mathrm{C}_{5}\right), 114.94-160.13$ $\left(\mathrm{C}_{\text {arom }}\right), 173.71$ and $173.77\left(\mathrm{C}_{6,8}\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 69.41 ; H, 5.82; N, 11.56\%; Found: C, 69.33; H, 5.93; N, 11.62\%.

4,7-dianisyl-3,3-dimethyl-1,2,7-triazaspiro[4.4]non-1-ene-6,8dione 3d: By the above method, anisylidene- N-anisylsuccinimide $(1.61 \mathrm{~g}, 5 \mathrm{mmol})$ to give a white solid $(1.18 \mathrm{~g}, 60 \%)$, m.p. $85^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\mathrm{cm}}{ }^{-1} ; 1510(\mathrm{~N}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.86\left(\mathrm{~d}, 1 \mathrm{H}, J=18.3 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.14(\mathrm{~d}, 1 \mathrm{H}, J=18.3$ $\left.\mathrm{Hz}, \mathrm{H}_{9}\right), 3.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.88-7.28\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 24.45$ and 28.48 $\left(\mathrm{CH}_{3}\right), 37.56\left(\mathrm{C}_{9}\right), 52.46\left(\mathrm{C}_{4}\right), 55.72\left(\mathrm{OCH}_{3}\right), 55.92\left(\mathrm{OCH}_{3}\right), 97.27$ $\left(\mathrm{C}_{3}\right), 99.45\left(\mathrm{C}_{5}\right), 114.52-160.111\left(\mathrm{C}_{\text {arom }}\right), 173.76$ and $173.87\left(\mathrm{C}_{6,8}\right)$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 67.16; H, 5.89; N, 10.68\%; Found: C, 67.19; H, 5.86; N, 10.75\%.

4,7-diphenyl-3,3,9-trimethyl-1,2,7-triazaspiro[4.4]non-1-ene-6, 8 -dione 3 e : By the above method, phenylidene- N-phenylmethylsuccinimide ($1.39 \mathrm{~g}, 5 \mathrm{mmol}$) to give a yellow solid ($0.96 \mathrm{~g}, 55 \%$), m.p. $151^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\mathrm{cm}}{ }^{-1} ; 1520(\mathrm{~N}=\mathrm{N}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.57$ $\left(\mathrm{d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.26$ $\left(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 6.94-7.49\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 15.04,24.01$ and $26.46\left(\mathrm{CH}_{3}\right), 47.46\left(\mathrm{C}_{9}\right)$, $50.10\left(\mathrm{C}_{4}\right), 97.02\left(\mathrm{C}_{3}\right), 99.11\left(\mathrm{C}_{5}\right), 127.02-136.05\left(\mathrm{C}_{\text {arom }}\right), 173.18$
and $177.23\left(\mathrm{C}_{6,8}\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 72.60; H, 6.09; N, 12.10\%; Found: C, 72.51 ; H, 6.21; N, 12.19\%.

4-anisyl-7-phenyl-3,3,9-trimethyl-1,2,7-triazaspiro[4.4]non-1-ene-6,8-dione 3f: By the above method, anisylidene- N phenylmethylsuccinimide ($1.54 \mathrm{~g}, 5 \mathrm{mmol}$) to give a white solid $(0.85 \mathrm{~g}, 45 \%)$, m.p. $116^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \mathrm{v}_{\mathrm{cm}}{ }^{-1} ; 1515(\mathrm{~N}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.59\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.21\left(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.79(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.78-7.49\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 15.06$, 23.99 and $27.56\left(\mathrm{CH}_{3}\right), 47.01\left(\mathrm{C}_{9}\right), 50.01\left(\mathrm{C}_{4}\right), 55.67\left(\mathrm{OCH}_{3}\right), 96.01$ $\left(\mathrm{C}_{3}\right), 99.06\left(\mathrm{C}_{5}\right), 114.25-159.88\left(\mathrm{C}_{\text {arom }}\right), 173.23$ and $178.46\left(\mathrm{C}_{6,8}\right)$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, $70.01 ; \mathrm{H}, 6.14 ; \mathrm{N}, 11.13 \%$; Found: C, 70.02; H, 5.99; N, 11.20\%.

7-anisyl-4-phenyl-3,3,9-trimethyl-1,2,7-triazaspiro[4.4]non1 -ene- 6,8 -dione 3 g : By the above method, phenylidene- N anisylmethylsuccinimide $(1.54 \mathrm{~g}, 5 \mathrm{mmol})$ to give a yellow solid $(1.22 \mathrm{~g}, 65 \%)$, m.p. $123^{\circ} \mathrm{C}$. IR (KBr) $\mathrm{v}_{\mathrm{cm}}{ }^{-1} ; 1510(\mathrm{~N}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.56\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.28\left(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.75(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.78-7.23\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.96$, 24.92 and $28.96\left(\mathrm{CH}_{3}\right), 45.50\left(\mathrm{C}_{9}\right)$, $49.56\left(\mathrm{C}_{4}\right), 55.94\left(\mathrm{OCH}_{3}\right), 89.82$ $\left(\mathrm{C}_{3}\right), 99.02\left(\mathrm{C}_{5}\right), 114.75-160.08\left(\mathrm{C}_{\text {arom }}\right), 172.46$ and $178.74\left(\mathrm{C}_{6,8}\right)$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 70.01; H, 6.14; N, 11.13\%; Found: C, 69.89; H, 6.03; N, 11.22\%.

4,7-dianisyl-3,3,9-trimethyl-1,2,7-triazaspiro[4.4]non1 -ene- 6,8 -dione 3h: By the above method, anisylidene- N anisylmethylsuccinimide $(1.68 \mathrm{~g}, 5 \mathrm{mmol})$ to give a yellow solid ($0.81 \mathrm{~g}, 40 \%$), m.p. $170^{\circ} \mathrm{C}$. IR (KBr) $\mathrm{vcm}^{-1} ; 1510(\mathrm{~N}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.61\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.25\left(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{9}\right), 3.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.78$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.77-7.31\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 15.01,23.99$ and $27.86\left(\mathrm{CH}_{3}\right), 46.43\left(\mathrm{C}_{9}\right), 49.57\left(\mathrm{C}_{4}\right)$, $55.82\left(\mathrm{OCH}_{3}\right), 55.96\left(\mathrm{OCH}_{3}\right), 99.00\left(\mathrm{C}_{3}\right), 99.05\left(\mathrm{C}_{5}\right), 114.63-161.10$ $\left(\mathrm{C}_{\text {arom }}\right), 172.99$ and $177.89\left(\mathrm{C}_{6,8}\right)$. Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 67.80 ; H, 6.18; N, 10.31\%; Found: C, 67.69; H, 6.05; N, 10.51%.

General procedure for the irradiation of the Δ^{2}-pyrazolines 3a-d All irradiation were carried out using similar conditions. The derivative was dissolved in ether (pre-treated by stirring with solid $\left(\mathrm{NaCO}_{3}\right)$, filtering and flushing with argon) and irradiation at $5^{\circ} \mathrm{C}$ for a total of 1 h or until the starting materiel was consumed (TLC). After this period the solvent was removed in a vacuum without heating to give brown oil, which was subjected to rapid silica filtration. Recrystallisation from dichloromethane/light petroleum.

2,5-diphenyl-1,1-dimethyl-5-azaspiro[2.4]heptane-4,6-dione 4a: A solution of 3a $(666 \mathrm{mg}, 2 \mathrm{mmol})$ in ether $(150 \mathrm{ml})$ was irradiated as previously described to give a white solid. Yield 45%, m.p. $=188^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=19.2 \mathrm{~Hz}, \mathrm{H}_{7}\right), 2.81\left(\mathrm{~d}, 1 \mathrm{H}, J=19.2 \mathrm{~Hz}, \mathrm{H}_{7}\right), 3.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.14-$ $7.53\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 20.74$ and $20.86\left(\mathrm{CH}_{3}\right)$, $31.30\left(\mathrm{C}_{7}\right), 31.87\left(\mathrm{C}_{1}\right), 34.04\left(\mathrm{C}_{3}\right), 40.28\left(\mathrm{C}_{2}\right), 126.63-134.32\left(\mathrm{C}_{\text {arom }}\right)$, 175.17 and $177.54\left(\mathrm{C}_{4,6}\right)$. Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 78.66$; H , 6.27; N, 4.59\%; Found: C, 78.45; H, 6.23; N, 4.55\%.

2-anisyl-5-phenyl-1,1-dimethyl-5-azaspiro[2.4]heptane-4,6dione $\mathbf{4 b}$: A solution of $\mathbf{3 b}(726 \mathrm{mg}, 2 \mathrm{mmol})$ in ether $(150 \mathrm{ml})$ was irradiated as previously described to give a white solid. Yield 65%, m.p. $=143^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.65\left(\mathrm{~d}, 1 \mathrm{H}, J=19.2 \mathrm{~Hz}, \mathrm{H}_{7}\right), 2.81\left(\mathrm{~d}, 1 \mathrm{H}, J=19.2 \mathrm{~Hz}, \mathrm{H}_{7}\right)$, $3.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.01-7.41\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 21.08$ and $21.20\left(\mathrm{CH}_{3}\right), 31.59\left(\mathrm{C}_{7}\right), 32.12\left(\mathrm{C}_{1}\right)$, $34.33\left(\mathrm{C}_{3}\right), 40.54\left(\mathrm{C}_{2}\right), 55.92\left(\mathrm{OCH}_{3}\right), 114.81-159.74\left(\mathrm{C}_{\text {arom }}\right), 175.86$ and $178.17\left(\mathrm{C}_{4,6}\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, $75.20 ; \mathrm{H}, 6.31$; N, 4.18\%; Found: C, 75.27 ; H, $6.40 ;$ N, 4.10%.

5-anisyl-2-phenyl-1,1-dimethyl-5-azaspiro[2.4]heptane-4,6dione 4c: A solution of 3c ($726 \mathrm{mg}, 2 \mathrm{mmol}$) in ether (150 ml) was irradiated as previously described to give a yellow solid. Yield 75%, m.p. $=150^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.63\left(\mathrm{~d}, 1 \mathrm{H}, J=19.2 \mathrm{~Hz}, \mathrm{H}_{7}\right), 2.79\left(\mathrm{~d}, 1 \mathrm{H}, J=19.2 \mathrm{~Hz}, \mathrm{H}_{7}\right)$, $3.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.99-7.39\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 20.75$ and $20.86\left(\mathrm{CH}_{3}\right), 31.25\left(\mathrm{C}_{7}\right), 31.79\left(\mathrm{C}_{1}\right)$, $33.98\left(\mathrm{C}_{3}\right), 40.20\left(\mathrm{C}_{2}\right), 55.59\left(\mathrm{OCH}_{3}\right), 114.47-159.39\left(\mathrm{C}_{\text {arom }}\right), 175.56$ and $177.84\left(\mathrm{C}_{4.6}\right)$. Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 75.20 ; \mathrm{H}, 6.31$; N, 4.18\%; Found: C, $75.01 ;$ H, 6.21; N, 4.09\%.
2,5-dianisyl-1,1-dimethyl-5-azaspiro[2.4]heptane-4,6-dione 4d: A solution of $3 \mathbf{d}(786 \mathrm{mg}, 2 \mathrm{mmol})$ in ether (150 ml) was irradiated as previously described to give a yellow solid. Yield 60%, m.p. $=162^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61(\mathrm{~d}$, $1 \mathrm{H}, J=19.2 \mathrm{~Hz}, \mathrm{H}_{7}$), $2.76\left(\mathrm{~d}, 1 \mathrm{H}, J=19.2 \mathrm{~Hz}, \mathrm{H}_{7}\right), 2.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right)$, $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.87-8.04\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$): 20.70 and $20.86\left(\mathrm{CH}_{3}\right), 31.24\left(\mathrm{C}_{7}\right), 31.88\left(\mathrm{C}_{1}\right)$, $33.99\left(\mathrm{C}_{3}\right), 39.68\left(\mathrm{C}_{2}\right), 55.36\left(\mathrm{OCH}_{3}\right), 55.58\left(\mathrm{OCH}_{3}\right), 113.79-159.37$ $\left(\mathrm{C}_{\text {arom }}\right), 175.61$ and $177.90\left(\mathrm{C}_{4,6}\right)$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}$, 72.31 ; H, 6.34; N, 3.83\%; Found: C, 72.18; H, 6.45; N, 3.91\%.

Received 28 December 2006; accepted 27 February 2007 Paper 06/4375 doi:10.3184/030823407X191868

References

1 E.C. Argyropoulou and P. Pilanidou, Tetrahedron Lett., 2003, 44, 3755.
2 J.H. Rigby and P.C. Kierkus, J. Am. Chem. Soc., 1989, 111, 4125.
3 Y.F. Zhu, T. Yamazaki, J.W. Tsang, S. Lok and M. Goodman, J. Org. Chem., 1992, 57, 1074.
4 E. Hedaya and S. Theodoropulos, Tetrahedron, 1968, 24, 2241.
5 M.J. Wanner and C-J. Koomen, Tetrahedron Lett., 1992, 33, 1513.
6 T. Fathi, N. Dinh An, G. Schmitt, E. Cerutti and B. Laude, Tetrahedron, 1988, 44, 4527.
7 A. Kerbal, K. Tshiamala, J. Vebrel and B. Laude, Bull. Soc. Chim. Belg., 1988, 97, 149.
8 C. Berger, M.F. Neumann and G. Ourisson, Tetrahedron. Lett., 1968, 9, 3451.

9 S.D. Andrews, A.C. Day, P. Raymond and M. C. Whiting, Org. Synth., 1970, 50, 27.

[^0]: * Correspondent. E-mail: bh_naoufel@yahoo.fr

